top of page
Search

PostgreSQL Indexing Strategies

  • Writer: Emilia
    Emilia
  • 1 day ago
  • 3 min read
postgres index strategies

Index Type

Best Use Cases

When to Use

Limitations

Performance Impact

B-Tree (Default)

Equality, range queries, sorting

• Most common queries 

• WHERE col = value 

• WHERE col > value 

• ORDER BY operations 

• Primary keys, foreign keys

• Not efficient for partial matches 

• No support for complex data types 

• Can become unbalanced with skewed data

• Fast lookups: O(log n) 

• Moderate storage overhead 

• Good for most workloads

Hash

Equality queries only

• Simple equality checks 

• WHERE col = value 

• High-cardinality columns 

• When range queries not needed

• Only supports equality (=) 

• No range queries 

• No sorting support 

• Not WAL-logged (unsafe for replication)

• Very fast equality: O(1) 

• Lower storage than B-Tree 

• Not crash-safe

GIN (Generalised Inverted)

Full-text search, arrays, JSON

• Text search with tsvector 

• Array contains operations 

• JSONB queries 

• Multi-value columns

• Large storage overhead 

• Slow updates (can batch) 

• Not suitable for simple equality

• Excellent for complex searches 

• High storage cost 

• Slow writes, fast reads

GiST (Generalized Search Tree)

Geometric data, full-text

• PostGIS spatial queries 

• Range types 

• Full-text search 

• Nearest neighbor searches

• More CPU intensive 

• Slower than specialized indexes 

• Complex to tune

• Flexible but slower 

• Good for complex data types 

• Extensible framework

SP-GiST (Space-Partitioned GiST)

Non-balanced data structures

• IP addresses (inet) 

• Text patterns 

• Quad-trees, k-d trees 

• Hierarchical data

• Limited use cases 

• Not widely supported 

• Complex implementation

• Efficient for specific patterns 

• Lower memory usage 

• Specialised scenarios only

BRIN (Block Range Index)

Large tables with natural ordering

• Time-series data 

• Monotonically increasing IDs 

• Date/timestamp columns 

• Very large tables (TB+)

• Only effective with sorted data 

• Poor performance on random data 

• Limited query types

• Extremely small size 

• Fast creation 

• Good for append-only data

Index Modifiers and Special Cases

Modifier/Type

Description

When to Use

Limitations

UNIQUE

Enforces uniqueness

Primary keys, unique constraints

Additional overhead for uniqueness checks

PARTIAL

Index subset of rows

WHERE conditions in CREATE INDEX

Only helps queries matching the condition

EXPRESSION

Index on computed values

Functions in WHERE clauses

Must match exact expression in queries

MULTICOLUMN

Multiple columns in one index

Compound WHERE conditions

Column order matters, left-prefix rule

CONCURRENT

Non-blocking index creation

Production systems

Takes longer, uses more resources

Column-Based Recommendations

Data Type/Pattern

Recommended Index

Reasoning

Primary Keys

B-Tree (automatic)

Fast lookups, unique constraint

Foreign Keys

B-Tree

Join performance

Timestamps

B-Tree or BRIN

Range queries, BRIN for time-series

Text (exact match)

B-Tree or Hash

B-Tree for flexibility, Hash for pure equality

Text (search)

GIN with tsvector

Full-text search capabilities

JSON/JSONB

GIN

Complex nested queries

Arrays

GIN

Contains and overlap operations

Geographic

GiST (PostGIS)

Spatial queries

IP Addresses

SP-GiST

Network operations

UUIDs

B-Tree

Standard lookups

Performance Guidelines

When to Add Indexes

  • Columns frequently used in WHERE clauses

  • JOIN conditions

  • ORDER BY columns

  • Columns with high selectivity (many unique values)

  • Foreign key relationships

When to Avoid Indexes

  • Small tables (< 1000 rows)

  • Columns with low selectivity (few unique values)

  • Tables with heavy INSERT/UPDATE workloads

  • Temporary or staging tables

Maintenance Considerations

  • REINDEX periodically for heavily updated indexes

  • Monitor index bloat with pg_stat_user_indexes

  • Use ANALYSE after significant data changes

  • Consider FILLFACTOR for frequently updated tables

  • Drop unused indexes (check pg_stat_user_indexes.idx_scan)

 
 
 

Comments


bottom of page